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Abstract

Weconsider linear statistics of the scaled zeros of DirichletL-functions, and show that the first
few moments converge to the Gaussian moments. The number of Gaussian moments depends
on the particular statistic considered. The same phenomenon is found in random matrix theory,
where we consider linear statistics of scaled eigenphases for matrices in the unitary group. In
that case the higher moments are no longer Gaussian. We conjecture that this also happens for
Dirichlet L-functions.

1. Introduction

Let q be an odd prime andχ aDirichlet character moduloq. ForRe(s) > 1 the DirichletL-function
L(s, χ) is defined as

L(s, χ) :=
∞∑

n=1

χ(n)

ns
=

∏
p

(
1 − χ(p)

ps

)−1

.

Each functionL(s, χ) has an infinite set of non-trivial zeros12 + iγχ, j which can be ordered so
that

· · · � Re(γχ,−2) � Re(γχ,−1) < 0 � Re(γχ,1) � Re(γχ,2) � . . .

Note that we do not assume the generalized Riemann hypothesis (GRH) since we allow theγχ, j to
be complex.

Denote byN (T, χ) number of non-trivial zeros such that 0< Re(γχ, j ) < T . Then for fixed
T > 0,

1

q − 2

∑
χ �=χ0

N (T, χ) ∼ T

2π
log

qT

2πe
asq → ∞,

where the sum is taken over all theq − 2 non-trivial characters modulo the primeq; see Titchmarsh
[22], Siegel [19], Selberg [18]. We will therefore scale the zeros by defining

xχ, j := logq

2π
γχ, j .
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The purpose of this paper is to consider linear statistics of the low-lyingxχ, j . Let f be a rapidly
decaying even test function, and consider the linear statistic

W f (χ) :=
∞∑

j=−∞
f (xχ, j ).

Linear statistics for low-lying zeros of several families ofL-functions were investigated
systematically by Katz and Sarnak [10] and by Iwaniec, Luo and Sarnak [9] where they were
called ‘one-level densities’. We prefer to use the terminology ‘linear statistic’ which is traditional
in random matrix theory.

Define theχ -average ofW f (χ) as

〈
W f

〉
q := 1

q − 2

∑
χ �=χ0

W f (χ).

In order to understand the distribution ofW f (χ) we calculate its first few moments〈W m
f 〉q . In

section 3 we prove that if supp̂f ⊆ [−2, 2], then the mean ofW f (χ) is
∫ ∞
−∞ f (x) dx , and in

section 4 we show that the variance converges to
∫ 1
−1 |u| f̂ (u)2 du if supp f̂ ⊆ [−1, 1]. In section 5

we show that if supp̂f ⊂ (−2/m, 2/m) (for m � 2) then the firstm moments ofW f converge to
the firstm moments of a normal random variable with mean and variance as above.

If all moments ofW f (χ) were Gaussian, then we would be able to conclude thatW f was
normally distributed. Indeed, it follows from the work of Selberg [18] that scaling theγχ, j by
anything much less than logq leads to a Gaussian distribution. However, with scaling on the order
of logq, this cannot be the case for allf since taking f to be an indicator function, the limiting
distribution is discrete. We therefore say thatW f displaysmock-Gaussian behaviour.

As suggested by Katz and Sarnak [10], one may try to model properties ofW f (χ) by random
matrix theory. LetU be anN × N unitary matrix, with eigenvalueseiθn . The statistical distribution
of (N/2π)θn has been conjectured to converge to the empirical distribution ofxχ, j asq andN both
tend to infinity

Therefore, as an aide to understandingW f (χ) = ∑∞
j=−∞ f (xχ, j ), one might wish to calculate

the moments of
∑N

n=1 f ((N/2π)θn). However, since theθn are angles, it is more natural (and
indeed more convenient) to consider the 2π -periodic function

FN (θ) :=
∞∑

j=−∞
f

(
N

2π
(θ + 2π j)

)

and modelW f (χ) by

Z f (U ) :=
N∑

j=1

FN (θ j ),

whereU is anN × N unitary matrix with eigenanglesθ1, . . . , θN . Note that the scalingN/2π (the
mean density) is equivalent to the scaling logq/2π for the zeros ofL-functions.

Our results forZ f (U ) are given in sections 6,7. WriteE to denote the average over the unitary
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group with Haar measure; then without any restrictions on the support of the functionf , weprove
thatE{Z f (U )} = ∫ ∞

−∞ f (x) dx , and that the variance tends to

σ( f )2 =
∫ ∞

−∞
min(1, |u|) f̂ (u)2 du. (1.1)

Observe that this is in complete agreement with the mean and variance ofW f (χ) if f̂ has the
same support restrictions. Furthermore, we show in section 6.1 that for any integerm � 2, if
supp f̂ ⊆ [−2/m, 2/m], then

lim
N→∞ E

{(
Z f − E{Z f }

)m} =
0 if m odd,

m!
2m/2(m/2)!σ

m if m even,

whereσ 2, the variance, is given in (1.1). These are the moments of a normal random variable, so
again we see mock-Gaussian behaviour, with the same restrictions on the support off̂ as inW f (χ).

To understand the mock-Gaussian behaviour, note that if we had defined

F (L)
N (θ) =

∞∑
j=−∞

f (L(θ + 2π j)) ,

where L → ∞ subject toL/N → 0, then Soshnikov [21] (see also [4]) has shown that the
mean of Z (L)

f (U ) converges to(N/2π L)
∫ ∞
−∞ f (x) dx , and that the centred random variable

Z (L)
f − E{Z (L)

f } converges in distribution to a normal random variable with mean zero and variance∫ ∞
−∞ f̂ (u)2|u| du. Our scaling isL = N/2π , which is just outside the range of Soshnikov’s result.

Indeed, note that the variance (1.1) is different if suppf̂ �⊆ [−1, 1].
In section 7 we show that all moments ofZ f can be calculated exactly within random matrix

theory, without any restrictions on the support off̂ . They are given by a complicated expression,
but are certainly not Gaussian moments in general. The moments ofZ f (U ) grow sufficiently slowly
that they uniquely determine its distribution.

Finally, in section 8 we apply the results of sections 3,4 to show that, under the assumption of
GRH, for eachq, there existχ such that the height of the lowest zero is less than a quarter of the
expected height. We also obtain a similar result where a positive proportion ofL-functions have
their first zero less than 0.633 times the expected height.

Linear statistics of the high zeros of afixed L-function also show mock-Gaussian behaviour [7],
having the same moments as the linear statistics of low-lying zeros considered in this paper.

Moments of linear statistics in other classical compact groups, like SO(2N ), SO(2N + 1) and
Sp(2N ) also show mock-Gaussian behaviour [8]. Other L-functions can be modelled by these
groups. For example, in the case of quadraticL-functions mock-Gaussian behaviour can be deduced
from the work of Rubinstein [17]. Specifically, if supp̂f ⊂ (−1/m, 1/m) then the firstm moments
are Gaussian with mean̂f (0) − ∫ 1

0 f̂ (u) du and variance 4
∫ 1/2

0 u f̂ (u)2 du, exactly as in the group
Sp(2N ). We remark that this is half the unitary range. Assuming GRH, the results ofÖzlück and
Snyder [15] show that the mean is indeed̂f (0) − ∫ 1

0 f̂ (u) du so long as supp̂f ⊂ (−2, 2), in the
sense that

1

D

∑
d

e−πd2/D2 ∑
γ

f

(
γ log D

2π

)
= f̂ (0) −

∫ 1

0
f̂ (u) du + o(1).
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We note that the arguments given here to study moments of the linear statistic show that the ‘n-
level densities’ [10,17] of this family of L-functions coincide with those of the unitary group, in a
suitable range, by purely combinatorial arguments. Since that is not our purpose here we leave it
for the reader.

Throughout all this paper, the Fourier transform iŝf (u) = ∫ ∞
−∞ f (x)e−2π i xu dx , and thus the

inverse transform isf (x) = ∫ ∞
−∞ f̂ (u)e2π i xu du.

2. The scaled level density W f

2.1. Zeros and the explicit formula

A Dirichlet characterχ : N −→ C is a function such thatχ(n + q) = χ(n) for all n; χ(n) = 0
if n andq have a common divisor; andχ(mn) = χ(m)χ(n) for all m, n. We sayχ is the trivial
character moduloq (denoted byχ0) if χ(n) = 1 for all n coprime toq. We say thatχ is even if
χ(−1) = 1, and odd ifχ(−1) = −1.

The explicit formula is the following relation between a sum over zeros ofL(s, χ) and a sum
over prime powers. To describe it, let

a(χ) =
{

0, χ even,

1, χ odd,

and leth(r) be any even analytic function in the strip−c � Im(r) � 1 + c (for c > 0) such that
|h(r)| � A(1+|r |)−(1+δ) (for r ∈ R, A > 0, δ > 0). Setg(u) = (1/2π)

∫ ∞
−∞ h(r)e−iru dr , so that

h(r) = ∫ ∞
−∞ g(u)eiru du. Then

∑
j

h(γ j,χ ) = 1

2π

∫ ∞

−∞
h(r)

(
logq + Gχ (r)

)
dr

−
∑

n

�(n)√
n

g(logn) (χ(n) + χ̄(n)) , (2.1)

where

Gχ (r) = �′

�
(1

2 + a(χ) + ir) + �′

�
(1

2 + a(χ) − ir) − 1
2 logπ

and the von Mangoldt function�(n) is defined as logp if n = pk is a prime power, and zero
otherwise.

2.2. A decomposition of W f

For test functionsf define the scaled level densityW f (χ) as

W f (χ) :=
∑

j

f

(
logq

2π
γχ, j

)
,

the sum over all non-trivial zeros ofL(s, χ).

DEFINITION 2.1 f (x) is an admissible test function forW f (χ) if it is a real, even function, whose
Fourier transformf̂ (u) is compactly supported, and such thatf (r)  (1 + |r |)−1−δ.
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We will transform W f into a sum over prime powers by using the explicit formula forL(s, χ).

In (2.1), takeh(r) = f

(
logq

2π
r

)
, so thatg(u) = 1

logq
f̂

(
u

logq

)
, and note that the conditions on

f̂ easily imply the analyticity and decay condition onh(r) in the explicit formula. We then get a
decomposition ofW f (χ) as

W f (χ) = W f (χ) + W osc
f (χ), (2.2)

where

W f (χ) := 1

2π

∫ ∞

−∞
f

(
logq

2π
r

) (
logq + Gχ (r)

)
dr

and (an oscillatory term)

W osc
f (χ) := − 1

logq

∑
n

�(n)√
n

f̂

(
logn

logq

)
(χ(n) + χ̄(n)) . (2.3)

The first termW f (χ) gives

W f (χ) =
∫ ∞

−∞
f (x) dx + O

(
1

logq

)
,

which is asymptotically independent ofχ .

3. The expectation of W f

The ‘expectation’ ofW f is defined as the average over allq − 2 non-trivial characters modulo the
primeq 〈

W f
〉
q := 1

q − 2

∑
χ �=χ0

W f (χ).

THEOREM 3.1 Let f be an admissible function, and assume supp( f̂ ) ⊆ [−2, 2]. Then, as q → ∞,〈
W f

〉
q =

∫ ∞

−∞
f (x) dx + O

(
1

logq

)
.

Proof. Wewill use the decomposition (2.2) and average overχ :〈
W f

〉
q = 〈

W f
〉
q +

〈
W osc

f

〉
q
.

SinceW f is asymptotically constant for anyf , we have

〈
W f

〉
q =

∫ ∞

−∞
f (x) dx + O

(
1

logq

)
and thus it will suffice to show that 〈

W osc
f

〉
q

= O
(

1

logq

)
.
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Wewill show this under the assumption supp( f̂ ) ⊆ [−2, 2].
Wehave by (2.3) that〈

W osc
f

〉
q

= − 1

logq

∑
n

�(n)√
n

f̂

(
logn

logq

) (〈χ(n)〉q + 〈χ̄(n)〉q
)
.

The mean value ofχ is

〈χ(n)〉q = 〈χ̄(n)〉q =


1, n ≡ 1 modq,

0, q | n,

− 1

q − 2
, n �≡ 0, 1 modq.

Thus we find〈
W osc

f

〉
q

= −2

logq

∑
n≡1 modq

�(n)√
n

f̂

(
logn

logq

)
+ 2

logq

1

q − 2

∑
n �≡1,0 modq

�(n)√
n

f̂

(
logn

logq

)
.

Assume that supp( f̂ ) ⊆ [−α, α] for α > 0. Then the sum is overn � qα. Since f̂ is bounded, we
may replace it by 1 over that range, and we therefore have〈

W osc
f

〉
q

 1

logq

∑
n≡1 modq

n�qα

�(n)√
n

+ 1

logq

1

q − 2

∑
n�qα

�(n)√
n

. (3.1)

To deal with the first sum in (3.1) one could replace primes by integers upon noting that
�(n)  logn, obtaining

1

logq

∑
n≡1 modq

n�qα

�(n)√
n

 1

logq

∑
n≡1 modq

n�qα

logn√
n

= 1

logq

∑
m<qα−1

log(mq + 1)√
mq + 1

 1√
q

q(α−1)/2

which vanishes forα < 2. However, one gets a slightly stronger result by the Brun–Titchmarsh
theorem [13], which says that ifπ(x; q, a) is the number of primesp � x , p ≡ a modq, whereq
anda are coprime, then forx > 2q,

π(x; q, a) <
2x

ϕ(q) log(x/q)
.

Therefore, forα > 1,

1

logq

∑
n≡1 modq

n�qα

�(n)√
n

 1

logq

∑
p≡1 modq

p�qα

log p√
p

 1

logq

∫ qα

2q

log x√
x

1

q

dx

log(x/q)
 1

logq
q−1+α/2

which vanishes forα � 2.
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To deal with the second sum in (3.1), one could similarly replace primes by integers, and note
that

1

logq

1

q − 2

∑
n�qα

logn√
n

 q−1+α/2

which vanishes ifα < 2. Again this result can be strengthened by using the prime number theorem,
since

1

logq

1

q − 2

∑
n�qα

n �≡0,1 modq

�(n)√
n

 1

logq

1

q

∑
p�qα

log p√
p

 1

logq

1

q

∫ qα

2

log x√
x

dx

log x
 1

logq
q−1+α/2

which vanishes forα � 2.

Thus
〈
W osc

f

〉
q

 q−1+α/2

logq
and so if α � 2 we find

〈
W osc

f

〉
q

→ 0 as required.

REMARK 1 Set

W (t)
f (χ) =

∑
γχ, j

f

(
logq

2π
(γχ, j − t)

)
which is like W f (χ) but with the zeros shifted by heightt . Averaging over all characters modulo

q, and doing an extra smooth average overt , the expected value ofW (t)
f converges to

∫ ∞
−∞ f (x) dx

without any restriction on the support of̂f .

4. The variance of W f

THEOREM 4.1 Let f be an admissible function and assume supp f̂ ⊆ [−1, 1]; then the variance
of W f tends to

σ( f )2 =
∫ 1

−1
|u| f̂ (u)2 du. (4.1)

Proof. The variance ofW f is, by Theorem 3.1,〈(
W f − 〈

W f
〉
q

)2
〉

q
=

〈
(W osc

f )2
〉
q

+ O
(

1

logq

)
,

and by (2.3),〈
(W osc

f )2
〉
q

= 1

(logq)2

∑
n1

∑
n2

�(n1)√
n1

�(n2)√
n2

f̂

(
logn1

logq

)
f̂

(
logn2

logq

)
× (〈χ(n1)χ(n2)〉q + 〈χ(n1)χ̄(n2)〉q + 〈χ̄(n1)χ(n2)〉q + 〈χ̄(n1)χ̄(n2)〉q

)
.

Now

〈χ(n1)χ(n2)〉q = 〈χ(n1n2)〉q =


1, n1n2 ≡ 1 modq,

0, n1 or n2 ≡ 0 modq,
−1

q − 2
, otherwise
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and

〈χ(n1)χ̄(n2)〉q =


1, n1 ≡ n2 �≡ 0 modq,

0, n1 or n2 ≡ 0 modq,
−1

q − 2
, otherwise.

Since we assume supp̂f ⊆ [−1, 1], we need only considern1, n2 � q. Therefore, writingn̄1 for
the inverse ofn1 moduloq,

〈
(W osc

f )2
〉
q

= 1

(logq)2

(
2

q−1∑
n1=2

�(n1)
2

n1
f̂

(
logn1

logq

)2

+2
q−1∑
n1=2

�(n1)√
n1

�(n̄1)√
n̄1

f̂

(
logn1

logq

)
f̂

(
log n̄1

logq

))

+O

 1

q − 2

 1

logq

∑
n�q

�(n)√
n

2
 . (4.2)

By the prime number theorem,

1

logq

∑
n�q

�(n)√
n


√

q

logq

and so theO term in (4.2) is bounded by 1/(logq)2.
Now,

2

(logq)2

q−1∑
n1=2

�(n1)√
n1

�(n̄1)√
n̄1

f̂

(
logn1

logq

)
f̂

(
log n̄1

logq

)


∑
p<q

p, p̄ prime

1√
p

1√
p̄

=
∑
p<q

p, p̄ prime

1√
kpq + 1

,

wherekp is defined so thatp p̄ = 1+kpq. By unique factorization, there are exactly two primes less
thanq which produce a givenkp, namelyp and p̄. Therefore there can be at most1

2π(q) different
kp, all lying between 1 andq − 1, and so

1

(logq)2

q−1∑
n1=2

�(n1)√
n1

�(n̄1)√
n̄1


π(q)/2∑

k=1

1√
kq + 1

 1√
q

√
q

logq
.
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Inserting this into (4.2) we have

〈
(W osc

f )2
〉
q

= 2

(logq)2

q−1∑
n=2

�(n)2

n1
f̂

(
logn

logq

)2

+ O
(

1√
logq

)

= 2

(logq)2

∑
p<q

(log p)2

p
f̂

(
log p

logq

)2

+ O
(

1√
logq

)

= 2

(logq)2

∫ q

2

(log x)2

x
f̂

(
log x

logq

)2 dx

log x
+ O

(
1√

logq

)

= 2
∫ 1

log 2/ logq
u f̂ (u)2 du + O

(
1√

logq

)

and so we see that, sincêf (u) is an even function,

lim
q→∞

〈
(W osc

f )2
〉
q

=
∫ 1

−1
|u| f̂ (u)2 du

as required.

REMARK 2 Assuming GRH,Özlück [14] shows that the variance of linear statistics of the scaled
zeros shifted byt and weighted by a smooth functionK , converge to the weighted form of (4.1)
so long as supp̂f ⊂ (−2, 2), when averaged overt and over all characters of modulus less thanq.
In fact, random matrix theory suggests that (4.1) is the correct variance for all admissible functions
(Theorem 6.2).

5. The moments of W f

We now attempt to understand thedistribution of the scaled level densityW f around its expected
value. We will find that the first few moments ofW f converge to those of a Gaussian random
variable with mean limW f = ∫ ∞

−∞ f (x) dx and variance∫ ∞

−∞
min(1, |u|) f̂ (u)2 du .

THEOREM 5.1 Let f be an admissible function, and assume that

supp f̂ ⊆ [−α, α], α > 0 . (5.1)

If m < 2/α, then the mth moment of W osc
f is

lim
q→∞

〈
(W osc

f )m
〉
q

=


m!
2m/2(m/2)!σ( f )m, m even,

0, m odd,

where σ( f )2, the variance, is given in (4.1).



318 C. P. HUGHES AND Z. RUDNICK

Proof. By (2.3), we have

W osc
f (χ) = − 1

logq

∑
n

�(n)√
n

f̂

(
logn

logq

)
(χ(n) + χ̄(n)) .

This gives

(W osc
f (χ))m =

(
− 1

logq

)m m∏
j=1

∑
n j

�(n j )√
n j

f̂

(
logn j

logq

) (
χ(n j ) + χ̄(n j )

)
=

∑
S⊂{1,...,m}

J (S)(χ),

where for any subset of indicesS ⊆ {1, . . . , m}, the summandJ (S)(χ) corresponds to the different
ways of pickingχ andχ̄ :

J (S)(χ) := (− 1

logq
)m

∑
n1,...,nm

m∏
j=1

�(n j )√
n j

f̂

(
logn j

logq

)
χ

(∏
j∈S

n j

)
χ̄

(∏
i /∈S

ni

)
.

Now average over the non-trivial charactersχ , using

〈
χ

(∏
j∈S

n j

)
χ̄

(∏
i /∈S

ni

)〉
q

=


1,

∏
j∈S n j ≡ ∏

i /∈S ni �≡ 0 modq,

0, any one ofn j ≡ 0 modq,

−1/(q − 2), otherwise.

This gives 〈
(W osc

f (χ))m
〉
q

=
∑

S⊂{1,...,m}
〈J (S)〉q

with

〈J (S)〉q =
(

− 1

logq

)m ∑
∏

j∈S n j ≡∏
i /∈S ni modq

m∏
j=1

�(n j )√
n j

f̂

(
logn j

logq

)

+O
(

1

q

(
1

logq

∑
n

�(n)√
n

f̂ (
logn

logq
)

)m)
. (5.2)

To bound the remainder term, use suppf̂ ⊆ [−α, α] with α < 2/m to estimate the sum

∑
n

�(n)√
n

f̂

(
logn

logq

)


∑
nqα

�(n)√
n

 qα/2.

Thus theO-term in (5.2) is bounded by

1

q(logq)m
qmα/2  q−(1−mα/2) → 0.
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Thus we find

〈J (S)〉q = (− 1

logq
)m

∑
∏

j∈S n j ≡∏
i /∈S ni modq

m∏
j=1

�(n j )√
n j

f̂ (
logn j

logq
) + O(q−(1−mα/2)).

We split the sum for〈J (S)〉q into termsJeq(S) where we have equality
∏

j∈S n j = ∏
i /∈S ni

rather then mere congruence moduloq, and the remaining terms:

〈J (S)〉q = Jeq(S) + Jcong(S) + O(q−(1−mα/2))

with

Jeq(S) :=
(

− 1

logq

)m ∑
∏

j∈S n j =∏
i /∈S ni

m∏
j=1

�(n j )√
n j

f̂

(
logn j

logq

)
,

(5.3)

Jcong(S) :=
(

− 1

logq

)m ∑
∏

j∈S n j ≡∏
i /∈S ni modq∏

j∈S n j �=∏
i /∈S ni

m∏
j=1

�(n j )√
n j

f̂

(
logn j

logq

)
.

5.1. Eliminating congruential terms

Wewill show that the termsJcong(S) are negligible:

Jcong(S)  q−(1−mα/2)+ε

for all ε > 0.

LEMMA 5.2 Assume XY = o(q2). Then

∑
M<X,N<Y

M �=N
M≡N modq

1√
M N


√

XY

q

and moreover if max(X, Y ) = o(q) then the sum is empty, hence is equal to zero.

Proof. We may assumeX � Y and so certainlyX = o(q). Then in the sum we must haveM < N
since otherwiseM = kq + N with k � 1 and soq < M < X = o(q) which gives a contradiction.
If Y = o(q) then likewise the sum is empty. Thus we now assume thatY � q. In that case we
write N = kq + M , 1 � k � Y/q. Then our sum is∑

M<X

1√
M

∑
k�Y/q

1√
kq + M


∑

M<X

1√
M

∑
k�Y/q

1√
kq


∑

M<X

1√
M

√
Y

q


√
XY

q

as required.
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LEMMA 5.3 Assume that r + s = m, and that α < 2/m. Then

1

(logq)m

∑
n1,...,nr ,m1,...,ms<qα∏

ni ≡∏
m j modq∏

ni �=∏
m j

∏ �(ni )√
ni

∏ �(m j )√
m j

 qmα/2−1+ε .

Proof. We replace the sum over prime powers by the sum over all integers and since all variables
are bounded byqα, we replace�(n) by logq. Thus our sum is much less than∑

n1,...,nr ,m1,...,ms<qα∏
ni ≡∏

m j modq∏
ni �=∏

m j

∏ 1√
ni

∏ 1√
m j

.

Now setN = ∏
ni , M = ∏

m j and sum separately over those tuplesn1, . . . , nr with N , M fixed.
The number of such tuples is qε for all ε > 0. Thus our sum is much less than

qε
∑

M<qsα,N<qrα

M≡N modq
M �=N

1√
M N

which by Lemma 5.2 is qε+mα/2−1 for all ε > 0, sinceqrα · qsα = o(q2) if mα = (r + s)α < 2.

Thus we find that 〈
(W osc

f )m
〉
q

=
∑

S⊂{1,...,m}
Jeq(S) + O(q−(1−mα/2)+ε) (5.4)

for all ε > 0.

5.2. Reduction to diagonal terms

Fix a subsetS ⊆ {1, . . . , m}. The sum inJeq(S) (5.3) is over tuples(n1, . . . , nm) which satisfy∏
j∈S n j = ∏

i /∈S ni . We say that there is aperfect matching of terms if there is a bijectionσ of
S onto its complementSc in {1, . . . , m} so thatn j = nσ( j) for all j ∈ S. This can happen only if
m = 2k is even and #S = #Sc = k.

Decompose

Jeq(S) = Jdiag(S) + Jnon(S) (5.5)

whereJdiag(S) is the sum of matching terms—the diagonal part of the sum (non-existent for most
S), andJnon(S) is the sum over the remaining, non-matching, terms.

5.3. Diagonal terms

Assume thatm = 2k is even. The diagonal terms are the sum over all

(
2k

k

)
subsetsS ⊂ {1, . . . 2k}

of cardinalityk = m/2 and for each such subsetS, Jdiag(S) is the sum over allk! bijectionsσ :
S → Sc of S onto its complement, of terms(

1

(logq)2

∑
n

�(n)2

n
f̂

(
logn

logq

)2
)k

.
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Weevaluate each factor by using the prime number theorem:

1

(logq)2

∑
n

�(n)2

n
f̂

(
logn

logq

)2

∼ 1

(logq)2

∫ ∞

2

log t

t
f̂

(
log t

logq

)2

dt

∼
∫ ∞

0
u f̂ (u)2 du. (5.6)

Since our function is even and supported inside(−2/m, 2/m) ⊆ (−1, 1) (sincem � 2), we can
rewrite this as

1

2

∫ ∞

−∞
min(1, |u|) f̂ (u)2 du =: σ( f )2/2.

This shows that form = 2k evenwe have asq → ∞ that∑
S⊂{1,...,m}

Jdiag(S) → (2k)!
2kk! σ( f )2k .

Below we will show that the non-diagonal termsJnon(S) are negligible, and hence by (5.4) and
(5.5) we will have thus proved Theorem 5.1.

5.4. Bounding the off-diagonal terms Jnon(S)

Wewill show the following.

LEMMA 5.4

Jnon(S)  1

logq
.

Proof. Since
1

logq

∑
p

∑
k�3

log p

pk/2
 1

logq

∑
p

log p

p3/2
 1

logq

the contribution of cubes and higher prime powers to (5.3) is negligible, and we may assume in
Jnon(S) that theni are either prime or squares of primes (upto a remainder ofO(1/ logq)). By the
fundamental theorem of arithmetic, an equality

∏
i∈S ni = ∏

j∈Sc n j forces some of the terms to
match, and unless there is a perfect matching of all terms, the remaining integers satisfy equalities
of the formn1n2 = n3 with n1 = n2 = p prime andn3 = p2 a square of that prime. Thus upto a
remainder ofO(1/ logq), Jnon(S) is a sum of terms of the form 1

(logq)2

∑
p

k=1,2

(log p)2

pk
f̂ (

log pk

logq
)2


u

·
(

1

(logq)3

∑
p

(log p)3

p2
f̂

(
log p

logq

)2

f̂

(
log p2

logq

))v

with 2u + 3v = m, andv � 1.
We showed (5.6) that the matching terms have an asymptotic value, hence are bounded. We

bound the second type of term by

1

(logq)3

∑
p

(log p)3

p2
f̂

(
log p

logq

)2

f̂

(
log p2

logq

)
 1

(logq)3

∑
p

(log p)3

p2
 1

(logq)3
.

Thus as long asv � 1 (that is, if there is no perfect matching of all terms), we get that the
contribution ofJnon(S) is O(1/ logq). This proves Lemma 5.4.
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6. The random matrix model

Let f (x) be an even real function subject to the decay condition that there exists a fixedε > 0 and
A > 0 such that

f (x) < A(1 + |x |)−(1+ε) for all x ∈ R. (6.1)

Define

FN (θ) :=
∞∑

j=−∞
f

(
N

2π
(θ + 2π j)

)
so thatFN (θ) is 2π -periodic. Define

Z f (U ) :=
N∑

j=1

FN (θ j ),

whereU is an N × N unitary matrix with eigenanglesθ1, . . . , θN . This is the random matrix
equivalent ofW f (χ).

The Fourier coefficients ofFN (θ) are

an,N = 1

2π

∫ π

−π

FN (θ)e−inθ dθ

= 1

N

∫ ∞

−∞
f (x)e−2π inx/N dx = 1

N
f̂
( n

N

)
and so, if the matrixU has eigenanglesθ1, . . . , θN ,

Z f (U ) :=
N∑

j=1

FN (θ j ) =
∞∑

n=−∞

1

N
f̂
( n

N

)
Tr U n . (6.2)

Since

E
{
Tr U n} =

{
N , n = 0,

0, otherwise

we have thus proven the following.

THEOREM 6.1

E
{

Z f
} = f̂ (0).

The definition of Fourier transform we use is such thatf̂ (0) = ∫ ∞
−∞ f (x) dx , so this theorem is

in perfect agreement with Theorem 3.1.

THEOREM 6.2 The variance of Z f tends to σ 2 as N → ∞, where

σ 2 =
∫ ∞

−∞
min(|u|, 1) f̂ (u)2 du. (6.3)
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Proof. Since [4,6,16]

E
{
Tr U n Tr U m} =


N 2 if n = m = 0,

|n| if n = −m and|n| � N ,

N if n = −m and|n| � N ,

0 otherwise

we have

E

{(
Z f − f̂ (0)

)2
}

=
∞∑

n=−∞
n �=0

1

N 2
f̂
( n

N

)
f̂
(
− n

N

)
min(|n|, N )

→
∫ ∞

−∞
min(|u|, 1) f̂ (u)2 du,

the last line following from the definition of a Riemann integral, and from the fact thatf (x) is even.

Note that this is the same as the variance ofW f (χ) (Theorem 4.1) when̂f is restricted to have
support contained in[−1, 1].

6.1. Mock-Gaussian behaviour

From (6.2) and Theorem 6.1, themth centred moment is

E
{(

Z f − E{Z f }
)m} =

∞∑
n1=−∞

n1 �=0

· · ·
∞∑

nm=−∞
nm �=0

1

N
f̂
(n1

N

)
. . .

1

N
f̂
(nm

N

)
E

{
Tr U n1 . . . Tr U nm

}
.

The following two lemmas will enable us to calculate these moments, under certain restrictions on
the support of̂f (u).

LEMMA 6.3 If
∑m

j=1 n j �= 0 then

E

{
m∏

j=1

Tr U n j

}
= 0.

Proof. By rotation invariance of Haar measure, the left-hand side is left unchanged by multiplication
by I eiθ (where θ is an arbitrary angle, andI is the identity matrix). Since Tr

(
(U I eiθ )n

) =
einθ Tr U n , this means

E

{
m∏

j=1

Tr U n j

}
= exp

(
iθ

m∑
j=1

n j

)
E

{
m∏

j=1

Tr U n j

}

which is true only if either both sides are zero, or if
∑m

j=1 n j = 0.
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LEMMA 6.4 (Diaconis, Shahshahani) [4,5] For a j , b j ∈ {0, 1, 2, . . . }, if

N � max

(
k∑

j=1

ja j ,

k∑
j=1

jb j

)
,

then

E

{
k∏

j=1

(
Tr U j

)a j
(
Tr U− j

)b j

}
= δa,b

k∏
j=1

ja j a j !,

where δa,b = 1 if a j = b j for j = 1, . . . , k, and δa,b = 0 otherwise.

THEOREM 6.5 For any integer m � 2, if supp f̂ (u) ⊆ [−2/m, 2/m], then

lim
N→∞ E

{(
Z f − f̂ (0)

)m
}

=
0 if m odd,

(2k)!
2kk! σm if m = 2k, k � 1 an integer,

where σ 2, the variance, is given by (6.3).

Proof. The restriction on the support of̂f (u) gives

E

{(
Z f − f̂ (0)

)m
}

= 1

N m

2N/m∑
n1=−2N/m

n1 �=0

· · ·
2N/m∑

nm=−2N/m
nm �=0

f̂
(n1

N

)
. . . f̂

(nm

N

)
E

{
Tr U n1 . . . Tr U nm

}
. (6.4)

Lemma 6.3 means that to have a non-zero contribution,
∑

n j = 0, and so

max
n j

|n j |<2N/m∑
n j =0

{
m∑

j=1

n j 11{n j >0}

}
� m

2

2N

m
= N ,

the maximum is obtained by all the positive terms equal to 2N/m, and all the negative terms to
−2N/m. (This maximum is obtainable only ifm is even.) Thus we see that the support restriction
means all the non-zero terms in (6.4) can be calculated using Lemma 6.4.

To obtain anything non-zero using Lemma 6.4, there must be a bijectionσ mapping{1, . . . , m}
into itself so thatn j = −nσ( j) for all j . Note that non j can equal zero, since this is expressly
forbidden in (6.4).

For oddm, it is impossible to pair off then j without having at least onen j = 0. Therefore (6.4)
is zero form odd.

For evenm = 2k, assume then j are such that they can be paired off, and relabel so thatr1 = n j1
where j1 is the smallest number such thatn j1 > 0, r2 = n j2 where j2 is the second smallest number

such thatn j2 > 0, etc. There are

(
2k

k

)
ways of arranging the positiven j > 0 to givethe sameri .



LINEAR STATISTICS OF LOW-LYING Z EROS OFl-FUNCTIONS 325

The number of ways of ordering the negativen j such that each positive term has a negative partner

equals
k!

b1! b2! . . . wherebi = #{ j : n j = −i}. Therefore, after reordering, (6.4) equals

N/k∑
r1=1

· · ·
N/k∑
rk=1

(
2k

k

)
k!

b1! b2! . . .E
{∣∣Tr Ur1

∣∣2 . . .
∣∣Tr Urk

∣∣2} k∏
i=1

1

N 2
f̂
( ri

N

)
f̂

(−ri

N

)

= (2k)!
k!

(
N/k∑
r=1

r

∣∣∣∣ 1

N
f̂
( r

N

)∣∣∣∣2
)k

→ (2k)!
k!2k

σ 2

since

1

b1! b2! . . .E
{∣∣Tr Ur1

∣∣2 . . .
∣∣Tr Urk

∣∣2} =
k∏

j=1

r j

by Lemma 6.4, and since

N/k∑
r=1

r

∣∣∣∣ 1

N
f̂
( r

N

)∣∣∣∣2 ∼ 1

2

∫ 1/k

−1/k
|u| ∣∣ f̂ (u)

∣∣2 du = 1
2σ 2

when supp̂f ⊆ [−1/k, 1/k], whereσ 2 is given by (6.3).

REMARK 3 One can also prove Theorem 6.5 by a completely different method, using techniques
found in [21]; we need to take this route when dealing with the other classical groups in [8].

7. Unrestricted moments of Z f (U )

In this section we will calculate the (uncentred)mth moment ofZ f (U ) without restriction on the
support. This allows us to conjecture an extension to Theorems 3.1 and 5.1. In particular, it appears
that themth centred moment ofW f (χ) is not Gaussian outside the range given in Theorem 5.1,
which would imply thatW f (χ) does not converge to a normal distribution.

Wewish to calculate the (uncentred)mth moment ofZ f (U ):

Mm := lim
N→∞ E

{(
Z f

)m}
= lim

N→∞ E

{
N∑

i1=1

· · ·
N∑

in=1

FN (θi1) . . . FN (θin )

}
. (7.1)

To evaluateMm , weuse ther -point correlation function of Dyson.

LEMMA 7.1 (Dyson)For an arbitrary function g of r variables which is 2π -periodic in all its
variables,

E


N∑

i1,...,ir =1
i j all distinct

g(θi1, . . . , θir )

 = 1

(2π)r

∫ π

−π

· · ·
∫ π

−π

g(θ1, . . . , θr )R(N )
r (θ1, . . . , θr ) dθ1 . . . dθr ,
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where

R(N )
r (θ1, . . . , θr ) = det

{
SN (θ j − θi )

}
1�i, j�r

with

SN (x) = sin(N x/2)

sin(x/2)
.

Note that the sums in (7.1) range unrestrictedly over all variables (they include both diagonal
and off-diagonal terms), whereas Lemma 7.1 requires the sums to be over distinct variables (off-
diagonals only). We overcome this problem by summing over the diagonals separately.

DEFINITION 7.2 σ is said to be a set partition ofm elements intor non-empty blocks if

σ : {1, . . . , m} −→ {1, . . . , r}
satisfying the following.

(1) For everyq ∈ {1, . . . , r} there exists at least onej such thatσ( j) = q (this is the non-
emptiness of the blocks).

(2) For all j , eitherσ( j) = 1 or there exists ak < j such thatσ( j) = σ(k) + 1. (Roughly
speaking, if we think of{1, . . . , r} as denoting ordered pigeonholes, thenσ( j) either goes into
anon-empty pigeonhole, or into the next empty hole).

The collection of all set partitions ofm elements intor blocks is denoted byP(m, r).

REMARK 4 The number ofσ ∈ P(m, r) is equal toS(m, r), aStirling number of the second kind.
The number of set partitions ofm elements into any number of non-empty blocks is

∑m
r=1 S(m, r) =

Bm , a Bell number.

LEMMA 7.3 For any function g of m variables,

∑
j1,..., jm

g(x j1, . . . , x jm ) =
m∑

r=1

∑
σ∈P(m,r)

∑
i1,...,ir

i j all distinct

g(xiσ(1)
, . . . , xiσ(m)

).

Proof. Each term on the left appears once and only once on the right, so they are equal.

THEOREM 7.4

Mm =
m∑

r=1

∫
· · ·︸ ︷︷ ︸
r

∫ ∞

−∞
Rr (x1, . . . , xr )

∑
σ∈P(m,r)

r∏
q=1

f λq (xq) dxq ,

where λq = #{ j : σ( j) = q}, and where

Rr (x1, . . . , xr ) = det

{
sin(π(x j − xi ))

π(x j − xi )

}
1�i, j�r

.
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Proof. Recall (7.1) that

Mm = lim
N→∞ E

{
N∑

i1=1

· · ·
N∑

im=1

FN (θi1) . . . FN (θim )

}
.

Lemma 7.3 gives

E

{
N∑

i1=1

· · ·
N∑

im=1

FN (θi1) . . . FN (θim )

}

=
m∑

r=1

∑
σ∈P(m,r)

E


N∑

i1,...,ir =1
i j all distinct

FN (θiσ(1)
) . . . FN (θiσ(m)

)


=

m∑
r=1

∑
σ∈P(m,r)

E


N∑

i1,...,ir =1
i j all distinct

Fλ1
N (θi1) . . . Fλr

N (θir )

 , (7.2)

whereλq = #{ j : σ( j) = q}. Lemma 7.1 now applies, and gives

E


N∑

i1,...,ir =1
i j all distinct

Fλ1
N (θi1) . . . Fλr

N (θir )


= 1

(2π)r

∫
· · ·

∫ π

−π

Fλ1
N (θ1) . . . Fλr

N (θr )R(N )
r (θ1, . . . , θr ) dθ1 . . . dθr

= 1

Nr

∫
· · ·

∫ N/2

−N/2
R(N )

r

(
2πx1

N
, . . . ,

2πxr

N

) r∏
q=1

F
λq
N

(
2πxq

N

)
dxq

upon change of variables toxn = N

2π
θn . Now,

FN

(
2πx

N

)
=

∞∑
j=−∞

f (x + N j) = f (x) + O
(

1

N 1+ε

)
uniformly for all x ∈ [−N/2, N/2], due to the decay condition onf (6.1).

Since

lim
N→∞

1

Nr
R(N )

r

(
2πx1

N
, . . . ,

2πxr

N

)
= Rr (x1, . . . , xr ) ,

where

Rr (x1, . . . , xr ) = det

{
sin(π(x j − xi ))

π(x j − xi )

}
1�i, j�r

,
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we have

lim
N→∞ E


N∑

i1,...,ir =1
i j all distinct

Fλ1
N (θi1) . . . Fλr

N (θir )

 =
∫

· · ·
∫ ∞

−∞
Rr (x1, . . . , xr )

r∏
q=1

f λq (xq) dxq . (7.3)

Hence, combining (7.1), (7.2) and (7.3)

Mm = lim
N→∞ E

{
N∑

i1=1

· · ·
N∑

im=1

FN (θi1) . . . FN (θim )

}

=
m∑

r=1

∑
σ∈P(m,r)

∫
· · ·︸ ︷︷ ︸
r

∫ ∞

−∞
Rr (x1, . . . , xr )

r∏
q=1

f λq (xq) dxq (7.4)

as required.

REMARK 5 One can show that the momentsMm of Z f uniquely determine the distribution to which
Z f weakly converges asN → ∞.

8. Application: small first zeros of L(s, χ)

In this section we will apply the results of sections 3 and 4 to show that, under the assumption of
GRH there exist DirichletL-functions with first zero lower than the expected height. Small gaps
between high zeros of the Riemann zeta function (which also obey unitary statistics) have been
much studied. Montgomery [11] showed that an infinite number of zeros are less than 0.68 times
their average spacing. This was reduced to 0.5179 by Montgomery and Odlyzko [12]; to 0.5171 by
Conrey, Ghosh and Gonek [2]; and to 0.5169 by Conrey and Iwaniec, as announced in [1]. Conrey,
Ghosh, Goldston, Gonek and Heath-Brown [3] showed that a positive proportion of zeros are less
than 0.77 times the average spacing, a result improved to 0.6878 by Soundararajan [20]. We should
perhaps point out that the main difference between gaps between the zeta zeros, and the height of
the lowest Dirichlet zero is that the point1

2 is not expected to ‘repel’ low-lying zeros.

8.1. Infinitely many small first zeros

Using Theorem 3.1 we are able to obtain some partial results for extreme low-lying zeros of
Dirichlet L-functions.

THEOREM 8.1 Assume GRH. If

lim
q→∞

〈
W f

〉
q =

∫ ∞

−∞
f (x) dx (8.1)

for all admissible functions f with supp f̂ ⊆ [−2R, 2R], then

lim inf
q→∞ min

χ �=χ0
xχ,1 � 1

4R
,

where the minimum of the first zero of L(s, χ) is taken over all non-trivial characters modulo q.
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Proof. Let ĝ(u) be an even, continuous function, with suppĝ ⊂ [−R, R], and such that̂g(u) is
differentiable in[−R, R] andg(x)  |x |−3/2−δ, δ > 0.

Let

B :=
√∫ ∞

0 x2g2(x) dx∫ ∞
0 g2(x) dx

=
√

(1/4π2)
∫ ∞

0 ĝ′(u)2 du∫ ∞
0 ĝ(u)2 du

so, by assumptions on̂g(u) and its derivative, we see thatB is a strictly positive finite real number.
Define, forβ > B,

f (x) = (x2 − β2)g2(x)

so that f has the properties∫ ∞

0
f (x) dx = −(β2 − B2)

∫ ∞

0
g2(x) dx < 0 (8.2)

and

f (x)
�
� 0 for |x | �

� β.

Note that the conditions on̂g(u) mean thatf is an admissible function.
Observe that

f̂ (u) = −1

4π2

d2

du2
(ĝ � ĝ)(u) − β2(ĝ � ĝ)(u) = −1

4π2
(ĝ′ � ĝ′)(u) − β2(ĝ � ĝ)(u),

where(ĝ � ĝ)(u) is the convolution of̂g with itself. Since differentiation and multiplication by a
constant does not increase the support of a function, we may conclude that suppf̂ ⊂ [−2R, 2R]
since, by assumption, supp̂g ⊂ [−R, R].

Therefore, by assumption (8.1) and by (8.2),

1

q − 2

∑
χ �=χ0

∑
j�1

f
(
xχ, j

) ∼
∫ ∞

0
f (x) dx < 0.

By the assumption of GRH all thexχ, j are real, and so we may conclude that there exists aq0 such
that for allq > q0,

1

q − 2

∑
χ �=χ0

∑
j�1

xχ, j �β

f
(
xχ, j

)
<

1

q − 2

∑
χ �=χ0

∑
j�1

f
(
xχ, j

)
< 0

and so, for allq > q0 at least oneχ , anon-trivial character moduloq, exists withxχ,1 � β. (Note
that this method produces a non-vacuous result only ifβ < 1, since by definition,

〈
xχ,1

〉
q → 1.) The

theorem will follow if we can construct ag(x) satisfying all the conditions such thatB = 1/4R, by
lettingβ → B.
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Taking ĝ(u) = cos(πu/2R) 11{|u|�R}, so that

g(x) = −4R cos(2πx R)

π(16x2R2 − 1)
,

we see that

B2 =
∫ ∞

0 x2g2(x) dx∫ ∞
0 g2(x) dx

= 1

16R2
.

This concludes the proof of Theorem 8.1.

REMARK 6 Our choice of̂g(u) = cos(πu/2R) 11{|u|�R} was not an arbitrary one, as this is the
optimizing function for this method.

COROLLARY 8.2 If the generalized Riemann hypothesis holds, then

lim inf
q→∞ min

χ �=χ0
xχ,1 � 1

4,

where the minimum of the first scaled zero of L(s, χ) is taken over all non-trivial characters modulo
q.

Proof. By Theorem 3.1 we may takeR = 1 in Theorem 8.1.

REMARK 7 Random matrix theory suggests that

lim inf
q→∞ min

χ �=χ0
xχ,1 = 0.

8.2. Positive proportion of small first zeros

Theorem 8.1 combined with Theorem 5.1 allows us to deduce a statement about a positive
proportion (rather than just infinitely many) of theχ have smaller than expected first zeros.

THEOREM 8.3 Assume GRH. For β � 0.633,

lim inf
q→∞

1

q − 2
#

{
χ �= χ0 : xχ,1 < β

}
� 11π2 − 3 − 72β2 − 88π2β2 − 48β4 + 176π2β4

12π2(4β2 − 1)2
.

Proof. Take

fβ(x) = (x2 − β2)g2(x),

where

ĝ(u) = cos(πu)11{|u|�1
2 }

(so f̂ (u) has support in[−1, 1], and f (x) � 0 for |x | � β, and f (x) � 0 otherwise).
As in the proof of Theorem 8.1 we have

lim
q→∞

〈
W f

〉
q =

∫ ∞

−∞
f (x) dx < 0 for β > 1

2. (8.3)
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By Theorem 5.1,

lim
q→∞

〈(
W f − 〈

W f
〉
q

)2
〉

q
=

∫ 1

−1
|u| ∣∣ f̂ (u)

∣∣2 du.

Chebyshev’s inequality gives

lim sup
q→∞

1

q − 2
#

{
χ �= χ0 :

∣∣∣W f − 〈
W f

〉
q

∣∣∣ � ε
}

�
∫ 1
−1 |u| ∣∣ f̂ (u)

∣∣2 du

ε2

and so, using the fact thatf is even,

lim inf
q→∞

1

q − 2
#

χ �= χ0 :
∣∣∣∣∣∣
∑
j�1

f (xχ, j ) −
∫ ∞

0
f (x) dx

∣∣∣∣∣∣ � ε1

 � 1 −
∫ 1
−1 |u| ∣∣ f̂ (u)

∣∣2 du

4ε2
1

,

whereε1 = ε/2.
If β > 1

2, puttingε1 = ∣∣∫ ∞
0 f (x) dx

∣∣ = 1
2

∣∣ f̂ (0)
∣∣, we get

lim inf
q→∞

1

q − 2
#

χ �= χ0 : −2

∣∣∣∣∫ ∞

0
f (x) dx

∣∣∣∣ �
∑
j�1

f (xχ, j ) � 0

 � 1 −
∫ 1
−1 |u| ∣∣ f̂ (u)

∣∣2 du

f̂ (0)2
.

(Note we need GRH here, so that
∑

j�1 f (xχ, j ) is real.) Sincef (xχ, j ) < 0 implies xχ, j < β we
may conclude that, after working out the integrals on the right-hand side,

lim inf
q→∞

1

q − 2
#

{
χ �= χ0 : xχ,1 < β

}
� 1 − 3 + π2 + 72β2 − 8π2β2 + 48β4 + 16π2β4

12π2(4β2 − 1)2
.

The right-hand side is greater than zero for

β � 1

2

√
9 + 11π2 + 2

√
18+ 66π2

√
11π2 − 3

≈ 0.633

as required.

REMARK 8 Random matrix theory suggests that a positive proportion of theχ havexχ,1 < β for
anyβ > 0.

REMARK 9 The test function we used in the proof is the optimum test function for Theorem 8.1,
but that does not necessarily make it the optimum test function here. Indeed, the word ‘optimum’
is not well defined here, as one can either try to find a function that maximizes the estimate of the
proportion ofχ satisfyingx1,χ < β, or one could try to find a function which minimizes theβ for
which this method proves a positive proportion ofx1,χ � β.
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