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Abstract

We consider linear statistics of the scaled zeros of Dirichlétinctions, and show that the first

few moments converge to the Gaussian moments. The number of Gaussian moments depends
on the particular statistic considered. The same phenomenon is found in random matrix theory,
where we consider linear statistics of scaled eigenphases for matrices in the unitary group. In
that case the higher moments are no longer Gaussian. We conjecture that this also happens for
Dirichlet L-functions.

1. Introduction
Letq be an odd prime ang aDirichlet character modulq. Forfie(s) > 1the DirichletL-function

L(s, x) is defined as
o0 -1
L(S’X):ZZX(S)Zn(l_X(Sp)> .
n=1 n p P

Each functionL (s, x) has an infinite set of non-trivial zerc#+ i vx,j which can be ordered so
that
< < Re(yy,—2) < Re(yy,—1) <0< Re(yy,1) < Re(yy2) < ...

Note that we do not assume the generalized Riemann hypothesis (GRH) since we aligw toe
be complex.

Denote byN(T, x) number of non-trivial zeros such that® Re(y,,j) < T. Then for fixed
T >0, L

q-—2

qT

—— asq — oo,
2re q

T
Y N(T, x) ~ 5—log

2
XFX0

where the sum is taken over all the- 2 non-trivial characters modulo the primesee Titchmarsh
[22], Siegel [19], Selberg 18]. We will therefore scale the zeros by defining

logqg

X = or Vx.i
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The purpose of this paper is to consider linear statistics of the low-ljng Let f be a rapidly
decaying even test function, and consider the linear statistic

Wi = Y f0x.

j=—00

Linear statistics for low-lying zeros of several families bffunctions were investigated
systematically by Katz and SarnakQ] and by Iwaniec, Luo and Sarnak][where they were
called ‘one-level densities’. We prefer to use the terminology ‘linear statistic’ which is traditional
in random matrix theory.

Define they-average oiWV; (x) as

1
<Wf >q =— > E Wi ().
q XFX0

In order to understand the distribution 8f¢ (x) we calculate its first few momentf)q . In
section 3 we prove that if supfﬁ C [-2, 2], then the mean oWV (x) is ffooo f(x) dx, and in

section 4 we show that the variance convergeﬁfthm fA(u)2 du if supp fc [—1, 1]. Insection 5
we show that if supd C (—2/m, 2/m) (for m > 2) then the firsth moments ofW; converge to
the firstm moments of a normal random variable with mean and variance as above.

If all moments of Wi (x) were Gaussian, then we would be able to conclude ¥atwas
normally distributed. Indeed, it follows from the work of Selbefd][ that scaling the/, j by
anything much less than lapleads to a Gaussian distribution. However, with scaling on the order
of logq, this cannot be the case for dll since takingf to be an indicator function, the limiting
distribution is discrete. We therefore say th#t displaysmock-Gaussian behaviour.

As suggested by Katz and SarndK], one may try to model properties &¥¢ (x) by random
matrix theory. LetJ be anN x N unitary matrix, with eigenvalue=®. The statistical distribution
of (N/2m)6n has been conjectured to converge to the empirical distribution pfasq andN both
tend to infinity

Therefore, as an aide to understandiig(x) = > 52 _ f(Xy,j), one might wish to calculate

the moments 0122‘:1 f((N/2m)6n). Howewer, since thed, are angles, it is more natural (and
indeed more convenient) to consider the-Reriodic function

o0

N :
Fn@) = Y f <g(9 +271]))

=0

and modeWs (x) by
N
Zi(U) =) FnO).
i=1

whereU is anN x N unitary matrix with eigenangles, .. ., On. Note that the scalin§! /2 (the
mean density) is equivalent to the scaling ¢p@r for the zeros oL -functions.
Our results forZ; (U) are given in sections 6,7. Writé to denote the average over the unitary
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group with Haar measure; then without any restrictions on the support of the furfGtive prove
thatE{Z; (U)} = ffooo f (x) dx, and that the variance tends to

o(f)2 = /OO min(L, |u]) f(u)? du. (1.1)

Observe that this is in complete agreement with the mean and varianag gf) if f has the
same support restrictions. Furthermore, we show in section 6.1 that for any integer2, if
suppf C [—2/m, 2/m], then

_ " 0 if modd,
NI@OOE{(Zf —E{Zf}) } = m! m

WU if m even,

whereo?, the variance, is given in (1.1). These are the moments of a normal random variable, so
again we see mock-Gaussian behaviour, with the same restrictions on the sudpastiafVs ().
To understand the mock-Gaussian behaviour, note that if we had defined

F-©) = Z f (L@ +27))),

j=—00

whereL — oo subject toL/N — 0, then SoshnikovZl] (see also4]) has shown that the
mean on(f")(U) converges ta(N/2x L)f_°°oo f(x) dx, and that the centred random variable

Z(fL) — ]E{Z(fL)} converges in distribution to a normal random variable with mean zero and variance
ff"oo f\(u)2|u| du. Our scaling isL = N/2r, which is just outside the range of Soshnikov’s result.

Indeed, note that the variance (1.1) is different if Slib@ [—1,1].

In section 7 we show that all moments &f can be calculated exactly within random matrix
theory, without any restrictions on the supportfof They are given by a complicated expression,
but are certainly not Gaussian moments in general. The momets(af) grow sufficiently slowly
that they uniquely determine its distribution.

Finally, in section 8 we apply the results of sections 3,4 to show that, under the assumption of
GRH, for eachy, there existy such that the height of the lowest zero is less than a quarter of the
expected height. We also obtain a similar result where a positive proportibafofictions have
their first zero less than®33 times the expected height.

Linear statistics of the high zeros ofiged L-function also show mock-Gaussian behaviodr [
having the same moments as the linear statistics of low-lying zeros considered in this paper.

Moments of linear statistics in other classical compact groups, lik8Q SO2N + 1) and
Sp(2N) also show mock-Gaussian behavio8t. [ Other L-functions can be modelled by these
groups. For example, in the case of quadratinctions mock-Gaussian behaviour can be deduced
from the work of Rubinsteinl[7]. Specifically, if suppf c (—1/m, 1/m) then the firsmt moments
are Gaussian with meaﬁ(O) — fol fA(u) du and variance 401/2 u fA(u)2 du, exactly as in the group
Sp(2N). We remark that this is half the unitary range. Assuming GRH, the resulBztifck and
Snyder 5] show that the mean is indedd0) — f; f(u) du so long as supfp C (-2, 2), in the

sense that 1
1 _ d2/D2 )/ |Og D ~ / o~
— T f = f(0) — f 1).
5 Xd:e Xy: < = (0) A (u) du 4+ o(1)
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We note that the arguments given here to study moments of the linear statistic show thmat the *
level densities’ 10, 17] of this family of L-functions coincide with those of the unitary group, in a
suitable range, by purely combinatorial arguments. Since that is not our purpose here we leave it
for the reader.

Throughout all this paper, the Fourier transformfAieu) = ff‘;o f (x)e~271XU dx, and thus the

inverse transform i (x) = [ f(u)e?"! du.

2. The scaled level density Wi
2.1. Zeros and the explicit formula

A Dirichlet charactery : N — C is a function such that (n + q) = x(n) for all n; x(n) = 0
if n andq have a common divisor; ang(mn) = x(m)x (n) for all m, n. We say x is the trivial
character modulg (denoted byyo) if x(n) = 1 for all n coprime togq. We say thaty is even if
x(=1) =1, and odd ify (—=1) = —1.

The explicit formula is the following relation between a sum over zerok(sf x) and a sum
over prime powers. To describe it, let

0, ewen,
an=1{. "
1, x odd,

and leth(r) be any even analytic function in the strigc < Jm(r) < 1+ c (for ¢ > 0) such that
lh()| < AQ+[r)~ A (forr € R, A> 0,8 > 0). Setg(u) = (1/27) [°2 h(r)e'"! dr, sothat
h(r) = [°2, g(uw€e™ du. Then

1 o0
SN0 =5 [ o) (loga + G,(0) e
j o

A(N) )
—~ Z N gogn) (x(n) + x(n)), (2.1)
where
r’ . r’ .
G, (r) = F(% +ax)+ir) + F(% +a(x) —ir) — logm

and the von Mangoldt function (n) is defined as log if n = pX is a prime power, and zero
otherwise.

2.2. A decomposition of Wj
For test functionsf define the scaled level denshty; (x) as

lo
Wi (x) = > f <2anyx,j> .
j

the sum over all non-trivial zeros &f(s, x).

DEFINITION 2.1 fA(x) is an admissible test function faV; (x) if it is a real, even function, whose
Fourier transformf (u) is compactly supported, and such that) < (1 + |r|)~12.
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We will transform W into a sum over prime powers by using the explicit formulalfgs, x).

logq 1
E( ), takeh(r) ( oo r),sot atg(u) 094
f easily imply the analyticity and decay condition btr) in the explicit formula. We then get a

decomposition otW; (x) as

?<L> and note that the conditions on
logq

Wi (x) = Wi (x) + W(x), (2.2)

where
— 1 [ logq
Wf (X) = E/_OO f <7r> (Iogq +GX(I‘)) dr

and (an oscillatory term)

A(n) ~(logn _
“logq Xn: /n f <Iogq)(x(n)+x(n)). (2.3)

The first termWys (x) gives

. 00 1
Wf(X)Z/oof(X)dX—l-O(m),

which is asymptotically independent gf

3. The expectation of Wi

The ‘expectation’ ofW; is defined as the average over@h- 2 non-trivial characters modulo the
primeq

Wt (x).

L p—
‘ q_zx#xo

THEOREM3.1 Let f be an admissible function, and ass,lmesupp(ﬂ C [-2, 2]. Then, asq — oo,

o0 1
(Wf)q :/_OO f(x) dx+0<m>.

Proof. We will use the decomposition (2.2) and average qyver
(Wi, = (W), + (we=,
SinceWs is asymptotically constant for anfy, we have

— &0 1

and thus it will suffice to show that
1
W9, =0 (iog3 )
q 0gq



314 C. P. HUGHES AND Z RUDNICK

We will show this under the assumption su;ﬁ) c[-22].
We have by (2.3) that

osd _ 1 A(n) ~/logn _
(Wf >q - Ioqun: T f<|qu>((X(n)>q+<X(n))q)~

The mean value of is

1, n =1 modg,
(XM = (X (Mg =1 qln,
_ﬁ’ n # 0,1 modg.
Thus we find
<W?sc> _ 2 ) A fA<logn> L2 1 3 A fA(logn> .
q Iogq n=1 modq \/ﬁ |qu |qu q-— 2 n=1,0 modq \/ﬁ |qu

Assume that supf) € [—«a, o] for & > 0. Then the sum is over < g°. Since f is bounded, we
may replace it by 1 over that range, and we therefore have

1 A(N) 1 1 A(n)
WOSC K —— —+ . (31)
n<g®

To deal with the first sum in (3.1) one could replace primes by integers upon noting that
A(n) < logn, obtaining

1 A(N) 1 logn
logq nEZ v/ logq nEZ v/n

1 modq 1 modq
n<g® n<q®
1 log(mg + 1)
logq gt ~/mg+1
1
(@=1)/2
< —(
Va

which vanishes forr < 2. However, one gets a slightly stronger result by the Brun—Titchmarsh
theorem 13], which says that ift (X; q, @) is the number of primep < X, p = a modq, whereq

anda are coprime, then fax > 2q,
(x: q.) s
(X Q,8) < ——————.
¢(a) log(x/a)

Therefore, forx > 1,

1 A(n 1 lo
99 n=1 modq n g9 p=1 modq \/ﬁ
n<g® p<g®
1 [(%logx1 dx 1 giap

< — <
logq Joq /X qlog(x/q) Iogqq

which vanishes fox < 2.
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To deal with the second sum in (3.1), one could similarly replace primes by integers, and note
that
1 1 logn
Z g « qLrer?
Iogq q- 2 n<q® \/ﬁ

which vanishes ift < 2. Again this result can be strengthened by using the prime number theorem,
since

1 1 A(N) 11 logp
logqq — 2 2 v/n T logqq 2 VP

n<q® p<o”
n#0,1 modq
1 1 (9 logx dx 1
L —= / 9 < —re/2
logqq /X logx " logq
which vanishes fox < 2
qfl+a/2
Thus<W?5°> < and ® if o <2we find<W?S°> — 0 asrequired.
q logq q

REMARK 1 Set |
0
w0 =3 f (%(m - t))
Yx.j
which is like Wt (x) but with the zeros shifted by heigiit Averaging over all characters modulo
g, and doing an extra smooth average dvéhe expected value (W%t) converges tgrfgo f(x) dx

without any restriction on the support of

4. Thevariance of Ws

THEOREM4.1 Let f be an admissible function and assume supp?g [—1, 1]; then the variance
of Wt tendsto

1
a(f)2=/ lu| f(u)? du. (4.1)

Proof. The variance oWs is, by Theorem 3.1,

-] =, o).

q

and by (2.3),

A(ny) A(nz) logn;\ ~(logn;
Wosc2 ( ) i ( >
<( ) >q (Iogq)z;% logq logq
x ({(x (N x (n2))q + (X(nl)X(n2)>q + (X (M) x(N2))g + (X (D X (N2))gq) -
Now
1, nin; = 1 modq,
(X (DX (M2))g = (x(Nn))g = 1 & N1ornz =0 modg,

otherwise

q-2
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and

1 ny =Nz # 0 modq,
() = {0~ Mornz=0modg.
a_2 otherwise.

Since we assume supfpc [—1, 1], we need only considems, n» < g. Therefore, writingn, for
the inverse ofiy moduloq,

oso2\ _ 1 ( T3 A(ny)? A(Iognl>2
<(Wf ) >q N (|09CI)2 2 Z—:Z ni f Iogq

A(nl) A(nl) logni\ ~/logn;
+ZZ <Iogq>f<logq ))

2
1 1 A(n)
+0 =2 (Iong ﬁ) . (4.2)

n<q

By the prime number theorem,

1 ZA(n) Ja
<
logg 7= vn " logq

and so the? term in (4.2) is bounded by/1logq)?.
Now,

A(nl) A(nl) (Iogn1> fA<Iogﬁ1> 1 1
< — =
(Iogq)2 Z logq logq p; VPP

p, p prime
- > =
= Jkpa+1
p. p prime

wherekp is defined so thapp = 14-kp(. By unique factorization, there are exactly two primes less
thang which produce a givekp, namelyp and p. Therefore there can be at mc%t(q) different
kp, dl lying between 1 and) — 1, and so

(/2 q_

A(nl) A(n ) 1
<
)2 Z ; /kq +1 [ |Og

(|09q
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Inserting this into (4.2) we have
A(n)2 Iogn
WOSC
<( >q (Iogq)2 Z ny Iogq ( Jlogq )
(logp)* ~ (Iog p)2
+ 0
(Iogq)2 p; logq ,/Iogq
2 /q (logx)2 fA<Iogx)2 dx Lot
" (logq)? J5 X logg/ logx Jlogq

1 ~ 1
=2/ uf?du+0 | ——
log 2/ logq Vlogq

and so we see that, sincfAQu) is an even function,

l —_
lim <(W?S°)2> :/ lul Fu)? du
gq—o0 q

as required.

REMARK 2 Assuming GRHQOzliick [14] shows that the variance of linear statistics of the scaled
zeros shifted by and weighted by a smooth functidf, converge to the weighted form of (4.1)

so long as supmAc (—2, 2), when averaged overand over all characters of modulus less th@an

In fact, random matrix theory suggests that (4.1) is the correct variance for all admissible functions
(Theorem 6.2).

5. The moments of Wk

We now attempt to understand thiéstribution of the scaled level densitys around its expected
value. We will find that the first few moments &Y¥; converge to those of a Gaussian random

variable with mean linWs = [ f(x) dx and variance

m —_
/ min(, [u]) f (u)? du .
—00
THEOREMDb.1 Let f be an admissible function, and assume that

suppng [—a,a], a>0. (5.1)

If m < 2/a, then the mth moment of W¢sCis

m!

lim <(W?S°)m> = { 272(m/2)!
4= a 0, m odd,

a(H™  meven,

where o ( f)?, the variance, isgivenin (4.1).
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Proof. By (2.3), we have

A(n) (Iog

0SC _ 1
WE*(x) = Iongf iog )(X(n)+x(n))

This gives

(W)™ = ( )m 1m[ Z
f logq

j=1n;

= Y IO,

log _
<Iogqj>(x(nj)+x(nj))

where for any subset of indic&C {1, ..., m}, the summand (S)(x) corresponds to the different
ways of pickingy andy:

~(1
IO : —(—m)m > ]_[A(n') (E%Z)x(]_[nj)i(]—[ni).

Ng,.,Nm j= jes i¢S

Now average over the non-trivial charactgrsusng

L HjeSnj = ni¢sni # 0 modq,
<X (H nj) * (H ni)> -1 any one oh; = 0 modg,
q

jes 1¢S —-1/(q—2), otherwise.
This gives
(we=oo™ = Y (SN
9 scir.m)
with

B 1 \" m logn;
W= <_@> 2 ( logq )

]‘[Jgsnl ]‘[,¢Sn. modg j=1

A(n) Iogn "
( <Iong Iogq) ) (5-2)

To bound the remainder term, use su’Apg [—a, a] with @ < 2/mto estimate the sum

A(n) logn a/2
ZI (Iogq) Z <

n n«g*

Thus theO-term in (5.2) is bounded by

qma/z < q—(l—ma/Z) >0

q(logg)™
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Thus we find

—1 = i) ~logn;
(J(S)q = (= m Z 1—[ |og ) | o0,
nj= H|¢s ni modg j=1 J gq

We split the sum for(J(S))q into terms Jeq(S) where we have equality'[jesnj = Hi¢Sni
rather then mere congruence modgl@nd the remaining terms:

(3(9)q = Jeg(S) + Joong(S) + O(q~1M/2))

with
1 m m A(n)A Iognj
Jeq(S) = <—_) j f< )
logq l'[,esn;l'[.¢sn 1:[ wan logqg
53
1 m m A(nj)A Iognj ( )
Jcong(s) = ~load Z . f | .
0ogq [Tjesnj=[Tigsn modg j=1 van 0gq
HJeSnJ#n|¢sn|

5.1. Eliminating congruential terms
We will show that the termslcong(S) are negligible:

Jeong(S) K q—(l—ma/2)+e
forall e > 0.
LEMMA 5.2 Assume XY = 0(g?). Then
Z 1 «/ XY
M<X,N< v a
M;AN
M=N modq

and moreover if max(X, Y) = o(q) then the sumis empty, henceis equal to zero.

Proof. Wemay assumeé& < Y and so certainly)X = o(q). Then in the sum we must hal < N
since otherwiseM = kg + N with k > 1 and sog < M < X = o(q) which gives a contradiction.
If Y = o(q) then likewise the sum is empty. Thus we now assumeYhgt . In that case we
write N = kq + M, 1 < k < Y/g. Then our sum is

1 1 1 1
& T o T € s T\ 2, R
<y 1 £<< XY

W= VM d q

as required.
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LEMMA 5.3 Assumethatr +s=m, andthat « < 2/m. Then

1 A(ny) 1—[ A(mj) Mer/2—1te
daam 2 = T—% <« -
(logg)™ N1,....Nr,My,....Ms<Qq® vag m;
[Ini=[1mj modg
[Tni#[Tm;
Proof. We replace the sum over prime powers by the sum over all integers and since all variables
are bounded bg*, we replaceA (n) by logq. Thus our sum is much less than

> M=
N1,....Nf,My,...,Ms<q* \/_' J
[Ini=[1m;j modg
[Tni#[Tm;
Now setN = [ nj, M = [[ m; and sum separately over those tupigs. . ., n; with N, M fixed.
The number of such tuples i g€ for all ¢ > 0. Thus our sum is much less than

1
S D
M<qsot’N<qra M N
M=N modq
M#N

which by Lemma 5.2 is< q¢T™*/2-1 for all ¢ > 0, sinceq"® - g = 0(q?) if ma = (r +S)a < 2.
Thus we find that

(Wgom) = 3 Jeg(®) + 0@ /2 (5.4)
9 sot..m

forall e > 0.

5.2. Reduction to diagonal terms

Fix a subsetS C {1,..., m}. The sum inJeq(S) (5.3) is over tuplegny, ..., ny) which satisfy
[ljesnj = [ligsni- We say that there is perfect matching of terms if there is a bijection of
Sonto its complemen§® in {1, ..., m} so thatn; = n,(j for all j € S. This can happen only if
m = 2k is even and #5 = #S° = k.

Decompose

Jeq(S) = Jdiag(S) + Inon(S) (5.5)

where Jgiag(S) is the sum of matching terms—the diagonal part of the sum (non-existent for most
S), and Jhon(S) is the sum over the remaining, non-matching, terms.

5.3.Diagonal terms

. . 2
Assume thain = 2k is even. The diagonal terms are the sum ove ih subsetsS c {1, ... 2k}

of cardinalityk = m/2 and for each such subs& Jgiag(S) is the sum over alk! bijectionso :
S — £ of Sonto its complement, of terms

k
1 A2 ~/logn\?
((Iogq)z; n f('OQQ)) '
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We evaluate each factor by using the prime number theorem:

A(n)2 (Iogn) 1 /00 logt A<Iogt )2
f dt
(quq)2 Z logq (logq)? J, ¢t logq

~/ uf(u)? du. (5.6)
0

Since our function is even and supported ingid/m, 2/m) C (-1, 1) (sincem > 2), we can
rewrite this as

%foo min(L, |u]) f(u)? du =: o (f)?/2.

—00

This shows that fom = 2k evenwe have ag| — oo that

2k)!
Z Jdiag(S) — %U(f)Zk.

Below we will show that the non-diagonal terrdsn(S) are negligible, and hence by (5.4) and
(5.5) we will have thus proved Theorem 5.1.

5.4. Bounding the off-diagonal terms Jnon(S)
We will show the following.
LEMMA 5.4

1
Jnon(S) K @

Proof. Since

log p 1 log p 1
Iogq ZZ 2 < ogg Xp: 032 < ogg

the contribution of cubes and hlgher prime powers to (5.3) is negligible, and we may assume in
Jnon(S) that then; are either prime or squares of primes (upto a remaindér(@f logq)). By the
fundamental theorem of arithmetic, an equalify.sni = [];cs: nj forces some of the terms to
match, and unless there is a perfect matching of all terms, the remaining integers satisfy equalities
of the formnin, = n3 with ny = ny = p prime andnz = p? asquare of that prime. Thus upto a
remainder of0(1/10gq), Jhon(S) is a sum of terms of the form

u

(Iog |0)2 Jogpt (Iog p) A<Iog p) log p?\ |
£
(quq)2 Z “logg * ((Iogq)3 2 logq logg

k12

with 2u + 3v = m, andv >
We showed (5.6) that the matching terms have an asymptotic value, hence are bounded. We
bound the second type of term by

5 (Iog |o)3 (Iog p>2 = (log P 5 (Iog p)3 1
(log q)3 logq logq (Iog q)3 (Iog 3

Thus as long a® > 1 (that is, if there is no perfect matching of all terms), we get that the
contribution of Jyon(S) is O(1/logq). This proves Lemma 5.4.
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6. Therandom matrix model

Let f (x) be an even real function subject to the decay condition that there exists & fixédand
A > 0such that

f(x) < A+ |x))~+ forall x € R. (6.1)
Define
e N
Fn(0) := j;oo f <E(9 +27rj)>

so thatFy () is 27 -periodic. Define

N
zf<U>:=_ZFN<9,-),

i=1

whereU is an N x N unitary matrix with eigenangleg, ..., 6n. This is the random matrix
equivalent ofWs (x).
The Fourier coefficients dfy (9) are

T

1 .
anN = — Fn(©)e ™' do

27 J
- %/_O; f (e 2T M/N dx = %f\(%)
and so, if the matriXJ has eigenangles, . . ., on,
zf(U):zZN:FN(ej)z i ifA(ﬂ)Tru“. (6.2)
= = N \N
Since

BATIUT = {ON gt:e?\;vise
we have thus proven the following.
THEOREMG.1

E{Z:} = f(0.

The definition of Fourier transform we use is such tﬁeﬁ)) = ffooo f (x) dx, sothis theorem is
in perfect agreement with Theorem 3.1.

THEOREM®6.2 Thevariance of Z; tendsto o2 as N — oo, where

%= foo min(jul, 1) f (u)? du. (6.3)

—00
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Proof. Since {4, 6, 16]

N2 ifn=m=0,

In| ifn=—-mand|n
N if n=—-mand|n
0 atherwise

E{Tru"Tru™} = ’

<N
>N

’

we have

E{(zf _ ?(0))2} _ i %?(%) fA(—%) min(n[. N)

n=—00
n#0

—>/ min(jul, 1) f(u)? du,

the last line following from the definition of a Riemann integral, and from the factftieat is even.

Note that this is the same as the varianc&\gf(x) (Theorem 4.1) wherf is restricted to have
support contained if1, 1].

6.1. Mock-Gaussian behaviour
From (6.2) and Theorem 6.1, tiath centred moment is

E{(Zi —E{Zs)" Z i —f(”l) %?(N) {Tru™.. Tru™} .

ni=—oo Nm=—
n17#0 nm#O

The following two lemmas will enable us to calculate these moments, under certain restrictions on
the support off (u).

LEMMA 6.3 If Y7L nj # Othen

m
E{HTrU”i} =0.
j=1

Proof. By rotation invariance of Haar measure, the left-hand side is left unchanged by multiplication
by 1€? (whered is an arbitrary angle, andl is the identity matrix). Since 1(r(UIe'9)”) =
€ Tru", this means

m m m
]E{l_[TrU”i} = exp(iGan)E{HTrU”i}
j=1 j=1 j=1

which is true only if either both sides are zero, oﬁf’j“:1 nj =0.
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LEMMA 6.4 (Diaconis, Shahshahand), b] For aj, bj € {0, 1,2, ...}, if

k k
N > max(Zjaj , Zjbj),
j=1 j=1
then

]Eijli(TrUj) (Tru- )']—aabnjala,,

wheredap = 1ifaj =bj for j =1,...,k, and 85 p = O otherwise.

THEOREM®6.5 For any integer m > 2, |fsuppf(u) C [—2/m, 2/m], then

~ m 0 if m odd,
lim E{(Z: — f(O = |
N— 00 {( f ()) ] (22k_|2'-0m ifm= 2k, k > 1 aninteger,

where o2, the variance, is given by (6.3).

Proof. The restriction on the support df(u) gives

E{(zf - F(O))"‘}
2N/m 2N/m

1 ~/N1 Nm
- = f(=)... f E{Tru™ .. Tru™}  (6.4)
N™ nlz_Xz:N/m nm:—ZZN/m (N> ( N ) { }
n1£0 Nm#0

Lemma 6.3 means that to have a non-zero contribuliom; = 0, and so

m 2N
max !Zn ]l{n,>0}} > =N
\nJ|<2N/m
2-nj=0

the maximum is obtained by all the positive terms equal fy &), and all the negative terms to
—2N/m. (This maximum is obtainable only ifi is even.) Thus we see that the support restriction
means all the non-zero terms in (6.4) can be calculated using Lemma 6.4.

To obtain anything non-zero using Lemma 6.4, there must be a bijegtimapping{l, ..., m}
into itself so thatnj = —n4(j) for all j. Note that non; can equal zero, since this is expressly
forbidden in (6.4).

Foroddm, it isimpossible to pair off thej without having at least one; = 0. Therefore (6.4)
is zero form odd.

For evenm = 2k, assume thaj are such that they can be paired off, and relabel sarthatnj,
wherej; is the smallest number such tmgt > 0,r> = nj, wherej; is the second smallest number

2k
such thanj, > 0, etc. There ar{ k) ways of arranging the positivej > 0 to givethe same;.
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The number of ways of ordering the negativesuch that each positive term has a negative partner

equals wherebj =#{] : n; = —i}. Therefore, after reordering, (6.4) equals

k!
bi!bo!. ..

> 3 (Bl |Trurk|lﬁ$f<“>A<‘w”>

re=1 i=1
2

since
= Ef[Trun . [mruk?) = ﬁr-

bi! by!. .. _J.:]_J
by Lemma 6.4, and since
N/k

1 ~/r
> v ()
r=1

when suppf € [—1/k, 1/K], whereo? is given by (6.3).

REMARK 3 One can also prove Theorem 6.5 by a completely different method, using techniques
found in [21]; we need to take this route when dealing with the other classical grougk in [

2 1/k
1
~§/ |u||f(u)| du = 302
—1/k

7. Unrestricted momentsof Z¢(U)
In this section we will calculate the (uncentrad)h moment ofZ ; (U) without restriction on the
support. This allows us to conjecture an extension to Theorems 3.1 and 5.1. In particular, it appears
that themth centred moment diVs (x) is not Gaussian outside the range given in Theorem 5.1,
which would imply thatW; (x) does not converge to a normal distribution.

We wish to calculate the (uncentreath moment ofZ ¢ (U):

Mpm := N|iLnOO]E{(zf)m}

= lim E{Z ZFN(O.l) FN(Qin)}. (7.1)

N— o0 1 -

To evaluateMpy,, we use the -point correlation function of Dyson.

LEMMA 7.1 (Dyson)For an arbitrary function g of r variables which is 2z -periodic in all its
variables,

N
1 T T
' ' _ (N)
E . §|r_1 gy, ..., 6;) _W‘/;n“' _ﬂ(}](@]_,...,@r)Rr 01,...,6,)do1...do,,

i aII distinct
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where
RN @1,....6) = det{Sy(6; — Qi)}lgi,jgr
with
_sin(Nx/2)
N = sin(x/2)

Note that the sums in (7.1) range unrestrictedly over all variables (they include both diagonal
and off-diagonal terms), whereas Lemma 7.1 requires the sums to be over distinct variables (off-
diagonals only). We overcome this problem by summing over the diagonals separately.

DEFINITION 7.2 ¢ is said to be a set partition aof elements inte non-empty blocks if
o:{1,....m}—{1,...,r}
satisfying the following.

(1) For everyg € {1,...,r} there exists at least ongsuch thato (j) = g (this is the non-
emptiness of the blocks).

(2) For all j, eithero(j) = 1 or there exists & < j such thats(j) = o(k) + 1. (Roughly
speaking, if we think ofl, ..., r} as denoting ordered pigeonholes, tlhdn) either goes into
anon-empty pigeonhole, or into the next empty hole).

The collection of all set partitions af elements inta blocks is denoted by (m, r).

REMARK 4 The number ot € P(m,r) is equal toS(m, r), aStirling number of the second kind.
The number of set partitions of elements into any number of non-empty block§]§‘=l S(m,r) =
Bm, a Bell number.

LEMMA 7.3 For any function g of m variables,

m

Z g(le, ...,ij) = Z Z Z g(Xi(y(l)7 ~"$Xia(m))’

JER r=loeP(mr) iy,..ir
ij al distinct

Proof. Each term on the left appears once and only once on the right, so they are equal.

THEOREM7.4

- oceP(mr)q=1

m [ee} !
Mm:Z// R (X1, ..., %) Z kaq(xq)dXQ’
r=1L_ o~
r

where .q = #{j : o(j) = q}, and where

sin(r (xj — xi))}
mXp=x) g

R(xl,...,xr)zdet{
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Proof. Recall (7.1) that

Mm = lim E{Z ZFN(O.l) FN(Gim)}-

im=1

Lemma 7.3 gives

N N
{Z Y Fn@y) - FN(eim)}

1 im=1
m N
Z Z Z FNGip) - PN i)
r=1loecP(m,r) i1,...,
i aII dlstlnct
m N A
=3 > B Y Reew..
r=1oeP(m,r) i1,.ir=
ij all distinct

wheredq = #{j : 0(j) = q}. Lemma 7.1 now applies, and gives

1) Z Fal6y) ... FL @6)

|J aII distinct

T @y

. N
upon change of variables ¢ = 2—9n. Now,
JT

2w X 1
Fn (T) Z f(x+ Nj) = f(x)+(9<N1+E)

j=—o00

uniformly for all x € [-N/2, N/2], due to the decay condition oh(6.1).
Since

. 1 27 X1 27 Xy
lim —RMN (=== | = T O N
Ninoo NrRr N 5 N Rr( 1 r)

where
sin(r (xj — xi))}
T(Xj =%)  Jagij<r

’

Re(X1,..., %) =det{

/f FEOD ... Fi 60ORMN 61, ..., 6) doy ... do
-7

1 NZ oy (2TX 2%\ 1 e
== RW (==, ... [TF0 (=
N _NJ2 N N /o

327

(7.2)

) dxq
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we have
N \ ) N )
I. ]E Fl i FI’ 1 = f)»q . 7
N i .;:1 N (Ghy) N (i) / [w Rr (X1, ,Xr)(!:[l (Xg) dxq. (7.3)
i} all distinct

Hence, combining (7.1), (7.2) and (7.3)

N N
Mm = lim E{Z--. > FN(Gil)...FN(Qim)}

=1  im=1
m 00 r
r=loePmr)l___J=> gq=1

r
as required.

REMARK 5 One can show that the momes, of Z; uniquely determine the distribution to which
Z¢ weakly converges aN — oo.

8. Application: small first zerosof L(s, x)

In this section we will apply the results of sections 3 and 4 to show that, under the assumption of
GRH there exist Dirichlet -functions with first zero lower than the expected height. Small gaps
between high zeros of the Riemann zeta function (which also obey unitary statistics) have been
much studied. Montgomeni]] showed that an infinite number of zeros are less thé8 imes

their average spacing. This was reduced.&1@9 by Montgomery and Odlyzkd?2]; to 0.5171 by

Conrey, Ghosh and GoneR][ and to 05169 by Conrey and lwaniec, as announcedljn Conrey,

Ghosh, Goldston, Gonek and Heath-Brovgh $howed that a positive proportion of zeros are less
than Q77 times the average spacing, a result improved@81B by Soundararaja@(]. We should

perhaps point out that the main difference between gaps between the zeta zeros, and the height of
the lowest Dirichlet zero is that the poiétis not expected to ‘repel’ low-lying zeros.

8.1. Infinitely many small first zeros

Using Theorem 3.1 we are able to obtain some partial results for extreme low-lying zeros of
Dirichlet L-functions.

THEOREM8.1 Assume GRH. If
) o0
ql|_)moo(Wf)q = f_oo f(x) dx (8.1)

for all admissible functions f with suppng [-2R, 2R], then

. . 1
liminf min x, 1 < —,
4—>00 x#xo 4R

where the minimum of the first zero of L (s, x) istaken over all non-trivial characters modulo q.
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Proof. Let §(u) be an even, continuous function, with si@ [—R, R], and such thaf(u) is
differentiable iN[—R, R] andg(x) « |x|~¥27%, 5 > 0.
Let

B._ [Jo XPg00 dx _ \/(1/47r2) Joo W2 du
TV fo 200 dx J&EGW?2 du

s0, by assumptions a(u) and its derivative, we see thBtis a strictly positive finite real number.
Define, forg > B,

f(x) = (x2 = BAHg2(x)

so thatf has the properties

/OO f(x) dx = —(8% — B?) /OO g?(x) dx < 0 (8.2)
0 0
and

f(x) § Ofor |X]| § B.

Note that the conditions ogi(u) mean thatf is an admissible function.
Observe that

-1 dz o~ o~ -1 ~ —~
fW =550 W - BE@* () = 2@+ W - BA@*G)(u),

where(g ) (u) is the convolution ofj with itself. Since differentiation and multiplication by a
constant does not increase the support of a function, we may conclude that sugp-2R, 2R]
since, by assumption, sugpC [—R, R].

Therefore, by assumption (8.1) and by (8.2),

1 00
5 2 )~ [ foodx<o

X#x0 j =1

By the assumption of GRH all the, j are real, and so we may conclude that there exigtssaich
that for allq > qo,

1 1
q-2 > f(Xx,j)<q—_ZZZf(Xx,J)<0
x#x0 j=1 X#x0 j =1
Xy, ] SB

and so, for alg > qg at least ong, anon-trivial character modulq, exists withx, 1 < 8. (Note
that this method produces a nhon-vacuous result orly<f 1, since by definitior‘(xx,l)q — 1.) The

theorem will follow if we can construct @(x) satisfying all the conditions such thBt= 1/4R, by
letting 8 — B.
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Taking@(u) = cos(mu/2R) Ly <Ry, SO0 that

—4Rco927XR)

X)= — =
90 = T leere — 1)
we see that

8?2 _ Jo~ X2g2(x) dx 1
g0 dx - 16R?

This concludes the proof of Theorem 8.1.

REMARK 6 Our choice ofg(u) = cos(ru/2R) Ijjy <Ry Was not an arbitrary one, as this is the
optimizing function for this method.

COROLLARY 8.2 If the generalized Riemann hypothesis holds, then

liminf min x, 1 <

1
7
g—>0 x#xo

where the minimum of thefirst scaled zero of L (s, x) istaken over all non-trivial characters modulo
g.
Proof. By Theorem 3.1 we may take = 1 in Theorem 8.1.

REMARK 7 Random matrix theory suggests that

liminf min x, 1 =0.
g—0 x#xo

8.2. Positive proportion of small first zeros

Theorem 8.1 combined with Theorem 5.1 allows us to deduce a statement about a positive
proportion (rather than just infinitely many) of tiyehave smaller than expected first zeros.

THEOREM8.3 Assume GRH. For 8 > 0.633

1172 — 3 — 7282 — 8872B2 — 488% + 1767284

gt e < ) > 120242 — 12
Proof. Take
f5(x) = (X% — B2)g2(x),
where

gu) = cosmW Ly, <1

(so f\(u) has support in—1, 1], and f (x) < 0for |x| < 8, and f (x) > 0 otherwise).
As in the proof of Theorem 8.1 we have

Nl

lim <Wf>q = /OO f(x) dx < Ofor 8 > 3. (8.3)

q—00 —o0
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By Theorem 5.1,

qleoo<(Wf —(Wf)q)2> :/_1l|u||fA(u)|2 du.

Chebyshev's inequality gives

q

o2
#{x £ 00 [Wr—(Wi)y| > ] < f—ll'“'|6fz(U>| du

limsup !
gooo —2

and so, using the fact thdtis even,

1 a2
o1 o0 2 lul [ fWw|” du
liminf #31x #x0 : E f(x,-)—/ fX)dx|<ergp =>1-— ,
g—o0 q—2 { i>1 X 0 4612_

wheree; = €/2. R
If B> 3, puttinges = | [~ f(x) dx| = 3 |T(0)], we get

1
liminf
g—o0 q —

<Y f(x.)) <0

oo Ll fw 2du
# X#Xo:—ZV f(x) dx 21_f—l| [T .
? 0 i>1

f(0)2

(Note we need GRH here, so that; -, f(x, ) is real.) Sincef (x, j) < 0impliesx,,; < g we
may conclude that, after working out the integrals on the right-hand side,
3472+ 7282 — 87282 + 488% + 1672p4
1272(4p2 — 1)? '

liminf ! # : >1
h@'{;‘)ﬁ {X#XO-XX,1<5}/

The right-hand side is greater than zero for

. 1v9+11n% + 2181 662 _ o
T2 V1ln2 =3 '

as required.

REMARK 8 Random matrix theory suggests that a positive proportion ofthavex, 1 < g for
anyg > 0.

REMARK 9 The test function we used in the proof is the optimum test function for Theorem 8.1,
but that does not necessarily make it the optimum test function here. Indeed, the word ‘optimum’
is not well defined here, as one can either try to find a function that maximizes the estimate of the
proportion ofy satisfyingxy,, < 8, or one could try to find a function which minimizes tjgefor

which this method proves a positive proportiorxef, < B.
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